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Programing By Example

Goal: synthesize program specified in terms of
input/output examples.
Approaches: enumerative type-based search
methods like λ2, Myth, Escher; Machine Learning
work uses methods like conditional program
generation, differentiable programming, and neural
guided synthesis.
Our approach: use a ML agent to guide the
search, but additionally give ML agent internal state
of symbolic system.

Background

We use the constraint logic programming language
miniKanren as the symbolic system.

• miniKanren is flexible: can synthesize dynamically
typed recursive programs

• write a relational interpreter in miniKanren: a
relational form (evalo P I O) of interpreter
(eval P I) = O

• relations like evalo can be thought of as
constraints

• query miniKanren to find solutions to P in
(evalo P I O) by iteratively expanding relation
evalo with its definition:
(evalo P I O)

⇒ disj →(evalo (quote A) I O)

→(evalo (car B) I O)

→(evalo (cdr C) I O)

→(evalo (cons D E) I O)

→(evalo (var F) I O)

. . .
• As we choose branches of disj to expand, we

search through possible programs P.

Our Approach: Neural Guide

Build a machine learning agent to choose branches
of disj to expand, taking constraints as inputs.
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(a) miniKanren builds constraints representing the PBE problem; candidate programs contain unknowns, whose values
are restricted by constraints: in the second candidate, the evalo constraints decompose the output into two
portions to be synthesized independently

(b) a neural network operating on the constraints scores candidates; each constraint is embedded and scored
separately, then pooled per candidate; scores determine which candidate to expand

(c) miniKanren expands the chosen candidate (cons D E), so that different completions of unknown D are added to
the set of candidates

(d) this process continues until a fully-specified program (with no logic variables) is found

Experimental Results

We report on two sets of results, with both experiments using the same trained weights.

• Test Problems Solved (%): held-out, dynamically-typed improper list construction problems.

• Generalization: Largest N for which synthesis of a family of programs succeeded.

Method Test Problems Generalization
Solved (%) Repeat(N) DropLast(N) BringToFront(N)

Naive 27% 6 (time) 2 (time) - (time)
+Heuristics 82% 11 (time) 3 (time) - (time)
RNN (No Constraints) 93% 9 (time) 3 (time) 2 (time)
GNN + Constraints 88% 20+ 6 (time) 6 (time)
RNN + Constraints 99% 20+ 6 (time) 5 (time)
λ2 4 (memory) 3 (error) 3 (error)
Escher 10 (error) 1 (oracle) - (oracle)
Myth 20+ - (error) - (error)
RobustFill beam 5000 100% 3 1 - (error)

• Repeat(N): repeat a token N
times

• DropLast(N): drop the last
element in an N element list

• BringToFront(N): bring the
last element to the front in an
N element list

• Failure modes: out of time,
out of memory, requires
oracle, other error

Model Choices

We test different models for scoring candidates:

• RNN+Constraints computes constraint embeddings
using LSTMs, treating constraints as sequences.

• GNN+Constraints computes constraint embeddings
using a Graph Neural Network (GNN), treating
constraints as graphs.

• RNN (No Constraints) scores candidate programs
directly by embedding the candidate program, input
sequence, and output sequence using LSTMs.

Training the models:
• Autogenerate training problems: generate a program,

then generate input/output examples for the program.
We use miniKanren to do this.

• Since we know a ground truth program during training,
we know which candidate program is correct at each
step.

• Expand 2 partial programs per step during training.

Why use constraints?

• Evaluating whether a partial program is plausible
should be easier than generating a program.

• ML Agent essentially learns a flavour of constraint
satisfaction.

• Constraints contain relevant portions of the
input/output, acting as an attentional mechanism.

• Constraints are roughly the same length, whereas
programs can be long, so we should be able to scale to
larger programs by using constraints.

Discussion & Future Work

• RNN with constraints performed almost perfectly in
test problems.

• RNN / GNN with constraints has the potential to scale
to larger programs.

• Thus far we have used a small subset of Lisp, without
recursion. We would like to expand to synthesize
programs in larger subsets of the Lisp language, and
recursive programs.
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