
Neural Guided Constraint Logic Programming for Program Synthesis
Lisa Zhang1,2, Gregory Rosenblatt4, Ethan Fetaya1,2, Renjie Liao1,2,3, William E. Byrd4, Matthew Might4, Raquel Urtasun1,2,3, Richard Zemel1,2

1University of Toronto, 2Vector Institute, 3Uber ATG, 4University of Alabama at Birmingham

Programing By Example

Goal: synthesize program specified in terms of
input/output examples.
Approaches: enumerative type-based search
methods like λ2, Myth, Escher; Machine Learning
work uses methods like conditional program
generation, differentiable programming, and neural
guided synthesis.
Our approach: use a ML agent to guide the
search, but additionally give ML agent internal state
of symbolic system.

Background

We use the constraint logic programming language
miniKanren as the symbolic system.

• miniKanren is flexible: can synthesize dynamically
typed recursive programs

• write a relational interpreter in miniKanren: a
relational form (evalo P I O) of interpreter
(eval P I) = O

• relations like evalo can be thought of as
constraints

• query miniKanren to find solutions to P in
(evalo P I O) by iteratively expanding relation
evalo with its definition:
(evalo P I O)

⇒ disj →(evalo (quote A) I O)

→(evalo (car B) I O)

→(evalo (cdr C) I O)

→(evalo (cons D E) I O)

→(evalo (var F) I O)

. . .
• As we choose branches of disj to expand, we

search through possible programs P.

Our Approach: Neural Guide

Build a machine learning agent to choose branches
of disj to expand, taking constraints as inputs.

examples

miniKanren ML Agent

program expands candidate

chooses candidate
input

output

Synthesis Steps

(car  )

(cons    )

(evalo   (1) (cons (1 1 1)  ))
(evalo   (a) (cons (a a a)  ))

(evalo   (1) (1 1))

(evalo   (1) 1)

(evalo   (a) (a a))
(evalo   (a) a)

...

ca
nd

id
at

e 
(p

ar
tia

l) 
pr

og
ra

m
s

ca
nd

id
at

e'
s 

co
ns

tra
in

ts

embed
embed

embed
embed
embed
embed

RNN/ 
GNN

score
score

score
score
score
score

MLP Pooling
Softmax

0.1

0.8

embed
embed

score
score

...

(car  )

(cons (var  )  )

...

...

(evalo   (1) (1 1))
(lookupo   (1) 1)

(evalo   (a) (a a))
(lookupo   (a) a)

(cons (app    )  )

...

Problem:
Input Output
(1)   (1 1 1)
(a)   (a a a)

...

(a) miniKanren builds 
     constraints 

(b) ML agent scores, chooses 
     candidate programs

(c) miniKanren expands 
     chosen candidate

(d) repeat 
     b and c
     until
     program
     found

...

A

A
A

B
C

D E

D

D
E

E

E

E

E

E

F

F

F

G EH

A

un
kn

ow
ns

ch
os

en
 c

an
di

da
te

 e
xp

an
de

dca
nd

id
at

es
 n

ot
 

ch
os

en
 re

m
ai

n

(a) miniKanren builds constraints representing the PBE problem; candidate programs contain unknowns, whose values
are restricted by constraints: in the second candidate, the evalo constraints decompose the output into two
portions to be synthesized independently

(b) a neural network operating on the constraints scores candidates; each constraint is embedded and scored
separately, then pooled per candidate; scores determine which candidate to expand

(c) miniKanren expands the chosen candidate (cons D E), so that different completions of unknown D are added to
the set of candidates

(d) this process continues until a fully-specified program (with no logic variables) is found

Experimental Results

We report on two sets of results, with both experiments using the same trained weights.

• Test Problems Solved (%): held-out, dynamically-typed improper list construction problems.

• Generalization: Largest N for which synthesis of a family of programs succeeded.

Method Test Problems Generalization
Solved (%) Repeat(N) DropLast(N) BringToFront(N)

Naive 27% 6 (time) 2 (time) - (time)
+Heuristics 82% 11 (time) 3 (time) - (time)
RNN (No Constraints) 93% 9 (time) 3 (time) 2 (time)
GNN + Constraints 88% 20+ 6 (time) 6 (time)
RNN + Constraints 99% 20+ 6 (time) 5 (time)
λ2 4 (memory) 3 (error) 3 (error)
Escher 10 (error) 1 (oracle) - (oracle)
Myth 20+ - (error) - (error)
RobustFill beam 5000 100% 3 1 - (error)

• Repeat(N): repeat a token N
times

• DropLast(N): drop the last
element in an N element list

• BringToFront(N): bring the
last element to the front in an
N element list

• Failure modes: out of time,
out of memory, requires
oracle, other error

Model Choices

We test different models for scoring candidates:

• RNN+Constraints computes constraint embeddings
using LSTMs, treating constraints as sequences.

• GNN+Constraints computes constraint embeddings
using a Graph Neural Network (GNN), treating
constraints as graphs.

• RNN (No Constraints) scores candidate programs
directly by embedding the candidate program, input
sequence, and output sequence using LSTMs.

Training the models:
• Autogenerate training problems: generate a program,

then generate input/output examples for the program.
We use miniKanren to do this.

• Since we know a ground truth program during training,
we know which candidate program is correct at each
step.

• Expand 2 partial programs per step during training.

Why use constraints?

• Evaluating whether a partial program is plausible
should be easier than generating a program.

• ML Agent essentially learns a flavour of constraint
satisfaction.

• Constraints contain relevant portions of the
input/output, acting as an attentional mechanism.

• Constraints are roughly the same length, whereas
programs can be long, so we should be able to scale to
larger programs by using constraints.

Discussion & Future Work

• RNN with constraints performed almost perfectly in
test problems.

• RNN / GNN with constraints has the potential to scale
to larger programs.

• Thus far we have used a small subset of Lisp, without
recursion. We would like to expand to synthesize
programs in larger subsets of the Lisp language, and
recursive programs.

Research reported in this publication was supported in part by the Natural Sciences and Engineering Research Council
of Canada, and the National Center For Advancing Translational Sciences of the National Institutes of Health under
Award Number OT2TR002517. R.L. was supported by Connaught International Scholarship. The content is solely the
responsibility of the authors and does not necessarily represent the official views of the funding agencies.


